Conditional Inference Functions for Mixed-Effects Models with Unspecified Random-Effects Distribution

نویسندگان

  • Peng WANG
  • Guei-feng TSAI
  • Annie QU
چکیده

In longitudinal studies, mixed-effects models are important for addressing subject-specific effects. However, most existing approaches assume a normal distribution for the random effects, and this could affect the bias and efficiency of the fixed-effects estimator. Even in cases where the estimation of the fixed effects is robust with a misspecified distribution of the random effects, the estimation of the random effects could be invalid. We propose a new approach to estimate fixed and random effects using conditional quadratic inference functions. The new approach does not require the specification of likelihood functions or a normality assumption for random effects. It can also accommodate serial correlation between observations within the same cluster, in addition to mixed-effects modeling. Other advantages include not requiring the estimation of the unknown variance components associated with the random effects, or the nuisance parameters associated with the working correlations. We establish asymptotic results for the fixed-effect parameter estimators which do not rely on the consistency of the random-effect estimators. Real data examples and simulations are used to compare the new approach with the penalized quasi-likelihood approach, and SAS GLIMMIX and nonlinear mixed effects model (NLMIXED) procedures. Supplemental materials including technical details are available online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Likelihood Inference in Generalized Linear Mixed Models

Consider a generalized linear model with a canonical link function, containing both fixed and random effects. In this paper, we consider inference about the fixed effects based on a conditional likelihood function. It is shown that this conditional likelihood function is valid for any distribution of the random effects and, hence, the resulting inferences about the fixed effects are insensitive...

متن کامل

Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout.

The analysis of longitudinal repeated measures data is frequently complicated by missing data due to informative dropout. We describe a mixture model for joint distribution for longitudinal repeated measures, where the dropout distribution may be continuous and the dependence between response and dropout is semiparametric. Specifically, we assume that responses follow a varying coefficient rand...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Conditional Inference about Generalized Linear Mixed Models

We propose a method of inference for generalized linear mixed models Ž . GLMM that in many ways resembles the method of least squares. We also show that adequate inference about GLMM can be made based on the conditional likelihood on a subset of the random effects. One of the important features of our methods is that they rely on weak distributional assumptions about the random effects. The met...

متن کامل

Estimated estimating equations: Semiparametric inference for clustered/longitudinal data

We introduce a flexible marginal modelling approach for statistical inference for clustered/longitudinal data under minimal assumptions. This estimated estimating equations (EEE) approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed-effects linear predictor with unknown smooth link, and variance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011